
ZI!!! !!!!!!!!!!!!!?

Z

)VIC

Unc1 as

03_'1.9B_

r

_k------

r , --

-- Z_ .

- .--3 Z _

I

---.zz

I _ _ q

.... - __2_L: [--- [.......

. Z -- - - __

NASA Contractor Report 4340

Validation Environment

for AIPS/ALS:

Implementation and Results

Zary Segall, Daniel Siewiorek,

Eddie Caplan, Alan Chung,

Edward Czeck, and

Dalibor Vrsalovic

Carnegie-Mellon University

Pittsburgh, Pennsylvania

Prepared for

Langley Research Center

under Grant NAG1-190

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Division

!990

Contents

1 Executive Summary I

Validat ion 3

2.1 System Specification 3

2.2 Validation Methodologies 4

Implementation of a Validation Environment on AIPS

3.1

3.2

8

Architecture of the FIAT Validation Environment 8

Architecture of the PIE Validation Environment 10

3.2.1 PIESCOPE 12

3.2.2 PIEMON 13

3.2.3 Setting Up an Experiment in PIE 14

Architecture of the KIPS Validation Environment 20

PIE Software 23

3.4.1

3.4.2

3.4.3

PIE Software on the/kIPS FTP 23

PIE Software on the AIPS Host 25

Workstation Software 26

4 Experiment Design and Results

4.1

4.2

4.3

28

LoopTest .. 28

MemTest .. 30

ActTest ... 33

5 Summary 38

letU l _ ttolt n

iii

PRECEDING PAGE BLANK NOT FILMED

References 40

A PIEscope Figures of the Experiments 42

A.1 Low Priority LoopTest 42

A.2 High Priority LoopTest 45

A.3 Low Priority MemTest 49

A.4 High Priority MemTest 53

A.5 Low Priority ActTest 57

A.6 High Priority ActTest 65

iv

1 Executive Summary

This is the final report of work done under contract NAG-l-190. This document presents the

work performed in porting the FIAT and PIE _ validation tools, developed at Carnegie Mellon

University, to the AIPS[1] system in the context of the ALS application, as well as an initial

fault-free validation of the available AIPS system. The PIE components implemented on AIPS

provide the monitoring mechanisms required for validation. These mechanisms represent a

substantial portion of the FIAT system. Moreover, these are required for the implementation

of the FIAT environment on AIPS. Using these components an initial fault-free validation of

the AIPS system was performed.

This report describes the implementation of the FIAT/PIE system, configured for fault-free

validation of the AIPS fault tolerant computer system. The PIE components have been modified

to support the Ada language. A special purpose AIPS/Ada runtime monitoring and data

collection has been implemented. A number of initial Ada programs running on the PIE/AIPS

system have been implemented. The instrumentation of the Ada programs was accomplished

automatically inside the PIE programming environment. PIE's on-line graphical views show

vividly and accurately the performance characteristics of Ada programs, AIPS kernel and the

application's interaction with the AIPS kernel. The data collection mechanisms were written

in a high-level language, Ada, and provide a high degree of flexibility for implementation under

various system conditions.

Beyond the demonstration of the success of the implementation of the FIAT/PIE, we have

characterized some of the critical components of the AIPS/Ada kernel. We paid special empha-

sis to the performance of Ada task management functions, communication, synchronization,

and memory management. Given the real-time ALS application requirements we stressed the

need for performance predictability. The collected data have pointed out a number of anoma-

lies. Some of these anomalies are due to the Verdix implementation of the Ada runtime library,

while others may be related to the implementation of the monitoring tools. Further work is

needed to calibrate and fine tune these tools.

The results of this work point in the following directions:

1. The PIE systems provides an automated fault-free validation environment for AIPS. Also,

we demonstrated the value of PIE as an architecture independent performance evaluation

and program development tool.

2. PIE functionality is required for the FIAT system for]ault-injecfion based validation of

l FIAT and PIE are described in Section 3.

the AIPS for ALS.

3. With the FIAT/PIE tools in place substantial insights of the performance intricacies of

AIPS are available.

.

,

.

.

,

Initial fault-free validation of the AIPS shows a number of anomalies in the critical areas of

task management, memory management, communication, synchronization, and runtime

overhead. Additional work is needed to eliminate or account for any anomalies in the

monitoring itself. Moreover, the discovery of these anomalies demonstrate the benefits of

the fault-free validation methodology applied to a system under development.

Once fully explained, those anomalies could either become user considerations or could be

fixed in future versions of the AIPS. In either case, the system will become substantially

more predictable and hence suitable for the real-time requirements of ALS.

Due to the concurrent development of AIPS and FIAT/PIE on AIPS, the FIAT/PIE

system have not been yet fully exploited for AIPS validation. (It is difficult to validate a

system under development - a moving target.)

There is a distinct opportunity with the PIE environment on AIPS and also the need for

a fault-free validation to be performed on the final version of AIPS. The validation suite

for the final version of AIPS must be biased towards the critical (or unknown) portions of

the system to avoid uncovering "known" limitations such as the poor memory allocation

performance.

After the completion of the fault-free validation, we are strongly suggesting the critical

need for Fault Injection based Validation of AIPS. Of special concern are the common

mode failures (most of which occur in the software component of the system), commu-

nication protocols and multiple single mode failures. For this purpose an opportunity

exists in using the proven methodology of FIAT/PIE and the availability of these tools

on AIPS.

This report is organized as follows. Section 2 motivates the need for a validation environment

based on a validation methodology which requires monitoring the system, as well as injecting

faults into the system. Section 3 describes the FIAT and PIE environments developed at

CMU, and presents the architecture and implementation of the FIAT/PIE environment on

the AIPS/ALS system. Section 4 presents experiments and results of the fault-free validation

experiments conducted on AIPS. Section 5 summarizes the report. Several appendices contain

data results with annotations highlighting relevant abnormalities.

2

2 Validation

Validation is the process of substantiating, through demonstration, that a given system meets

its specification[2, 3]. For highly dependable systems, the specifications contain extreme re-

liability requirements which necessitate the ability to function under faulty conditions. To

demonstrate or validate the system operation, prediction methods must be used to determine

the system "operation point" before the system is committed to use. Methods of determining

the "operation point", or the nominal behavior, include simulation, modeling, and analysis.

Complimentary to these methods are experimental methods, such as program instrumentation

and fault injection, which are well suited for areas in which modeling and analysis fail to capture

the needed detail.

2.1 System Specification

System specifications can be divided into two domains, with the validation effort directed to

demonstrate that both are fulfilled[4]. The first domain includes functionality and the second

is the bounds within which correct functioning must occur. Functionality is by far the easier of

the two domains to validate; metrics, such as throughput and real-time deadlines, are readily

defined. The bounds of correct functioning typically are associated with dependable computing

and include metrics such as reliability, maintainability, and fault tolerance.

A functionality requirement includes performance measures where performance is measured

in functions per unit time or in the time needed to complete a specific task[5]. The notion

of performance exists throughout the digital design hierarchy, from the circuit level (switching

times), to the system level (application execution time). With this definition and a validation

methodology, a performance evaluation matrix can be created, as depicted in Table 1. The

vertical axis is the design hierarchy, while along the horizontal axis are definitions or charac-

terizations of performance. Elements in the matrix are not singular and evaluation measures

can overlap. The area of concentration for the measures is dependent upon the needs of the

validation in measuring the "operating point" and also the level of instrumentation 2 available

in the validation environment.

A typical reliability requirement for a life critical application is 10 -1° failures per hour. The

basis for this failure rate can be justified through the following life-cycle model. Assume a 30

year life, with 8 hours operation per day; this yields approximately 100,000 (10 s) operational

2Instrumentation, as used in the FIAT and PIE environment is the process of adding measuring devices or

software "hooks" into a workload to monitor its execution and report the occurrence of events.

Behavior Throughput Utilization Delay

Application

Executive,

Operating

System

Instruction

Set,

Hardware

Correct Function

in Integrated

Environment

Correct Operation

of Scheduler,

Dispatcher, etc.

Correct Operation

of Interrupts,

etc.

Application

Task Times (e.g.

flight control)

Operating System

Primitive

Times

Instruction,

and Resource

Times

Idle Time

Operating System

Frequency of

Use

Hardware

Frequency of

Use

Variation Caused

by Shared Data,

Increased Load

Variation Caused

by Hardware and

Data Contention

Variation Caused

by Hardware

Contention

Table 1: Performance Evaluation Matrix

hours per urdt. If 100,000 (10 s) copies are produced and one failure is acceptable over the life of

all copies, then the failure rate must be less than 10 -l° failures per hour. This translates to one

failure per I million years per unit or several orders of magnitude greater than the reliability

of todays systems. This stringent reliability requirement yields two observations. The first

is that non-redundant systems are at least six orders of magnitude less reliable than the goal,

necessitating the use of redundancy and its ability to function correctly with faults present. The

second is that life testing (monitoring) for confirmation of reliability is impossible, necessitating

the need for accelerated testing.

In characterizing and testing any system, it is necessary to apply a sample of the input space

into the unit under test. The approach for a fault-tolerant system is the same: in a fault-tolerant

system part of the valid input space is faults. Hence faults must be injected to test the system,

as are data values. Thus the goal of fault injection is to emulate the behavior of a system with

faults present. Once a fault injection methodology is developed, the problem becomes one of

testing; namely what set of faults is needed to test and validate the fault tolerant aspects of

the system.

2.2 Validation Methodologies

Much work has been done in validation methodologies, especially in aerospace and other life-

critical applications. These methodologies include formal proofs, analyses, and tests to as-

sure the system meets its specifications. Although there is no commonly accepted validation

methodology, a generalized methodology may be extracted from procedures presented in the

literature[4, 6, 7, 8, 9, 10, 11, 12]. The approach is to build confidence in the system by a thor-

ough and systematic methodology of proofs, analyses, and tests. Proofs are formal arguments

supported by deductive inferences. Analyses employs models of the system, and testing uses

4

Development Abstract _ Concrete

Level Design Proofs Analyses Tests

Architecture

Implementation

Realization

Prove Architecture

Against Requirements

Reliability and Error

tLate Markov Models

Design Reviews

Simulations

Prove Implementation

Against Architecture

Fault Tree Analysis Simulations and

Emulation of Hardware

Prove Realization

Against Implementation

Failure Modes and

Effects Analysis

Support Assumptions from

Analyses, Fault Injection

Table 2: Validation Activities throughout the Design Space

statistical inference. These three methods are complementary: proofs and analyses use abstract

models of the systems; testing uses the actual system to substantiate the models and results

generated in the analyses.

These three processes (proofs, analyses, and testing) are applied throughout the system de-

velopment as depicted in Table 2. During the architecture development, proofs are generated

which specify the conditions necessary to achieve the requirements. Analyses of the architecture

include reliability and error rate Markov models, while the testing comprises activities such as

high level simulations and design reviews. At the implementation level, the conditions required

in the ardfitecture proofs axe verified, leading to more conditions for the realization. The

analyses includes further refinement of the Markov models developed in the architecture anal-

yses, and in-depth analyses such as Fault-Tree generation. Testing begins to involve concrete

methods such as simulation and emulation of the design. In the final level realization, proofs

of the hardware and software structure are continued from the implementation level. Analy-

ses indudes exhaustive Failure Modes and Effects Analysis, refinement of Fault-Tree analysis,

and the inclusion of specific failure rates into the reliability and error rate analyses. Testing

at the realization stage measures the assumptions and requirements used in the proofs and

analyses. The assumptions involve error rates, fault latency, and coverage, as well as concrete

measurements such as throughput, utilization, and error recovery time.

Two possible methods exist for validation of highly reliable systems under faulted conditions.

The first method, life testing, monitors actual running systems awaiting the natural occurrence

of faults. The behavior of the system, when faults occur, can then be analyzed and used to

support validation assumptions or conditions. The second method, fault injection, induces

faults into the system and analyzes behavior under these conditions. Life testing offers realism,

but due to the current level of component reliability, faults can be expected at a rate of one in

10 3 hours per system. This failure rate is prohibitively slow for the completeness required in

thoroughtesting. Fault injection speedsup the rateat whichsyntheticfaults occur. The use
of syntheticfaults is necessarygiventhelargenumberof fault types,fault locations,and times
of occurrence.Forexample,a smallboard consistingof 50packageseachwith 20pins,hasa
fault spaceof 1000pin-levelfaults without consideringany time dependencies.Additionally,
softwarefaultsmustbe consideredasthemajority of systemcomplexitymovesinto software.
Thesoftware-faultspaceisalsolarge- considertheamountof codepresentin eventhesmallest
of operatingsystems.

Underlyinganymethodology,theremust be a set of guidingphilosophies.Over the last
decade,CMU hasdedicatedover100man-yearsof effort in the design,construction,andvali-
dationof multiprocessorsystems.A partial list of theexperimentalguidelinesdevelopedduring
the last decadeinclude:

• Theexperimentalvalidationmethodologyis successivelyrefinedasexperimentsuncover
newinformationandthe methodologyis appliedto newmultiprocessorsystems.

• Experimentsaredesignedto validatebehaviorthat is documented,aswell asbehavior
that is not documented.

• Experimentsareconductedin asystematicmanner;sincethesearchis for theunexpected,
therearenoshortcutsto thoroughtesting.

• Experimentsshouldbe repeatable.

• Thefeasibilityof performingvariousexperimentsis temperedby what isavailablein the
experimentalenvironment.More sophisticatedexperimentsmay haveto be postponed
until the experimentalenvironmentis providedwith moretools.

• A buildingblock approachshouldbeusedwhereinonevariableis changedat a time, so
the causeof unexpectedbehavioris easyto isolate.

• Testingshouldtakeadvantageof thestructural(abstract)levelsusedin the designof the
system.

With a fault-tolerant,ultra-reliablesystemotherproblemsarisewhichmakethe validation
taskincreasinglydifficult. Someof theseproblemsare:

• Life testingis inappropriate,dueto largemean-time-to-failureof the system.

Systemdesigncomplexitymakesit difficult to performfailureeffectanalysis,instrument

andmeasureall relevantparameters,anduseexhaustivetestingapproaches,sincethere
area largenumberof statesandfailuremodespossible.

• Largescaleintegrationmakesaccessto controlandobservationpoints difficult as well as

determining a confidence level for fault coverage.

6

NASA held severalworkshopsto determinevalidationprocedures.One[11] in particular

produceda detailedoutlineof a validationprocedure.Theprocedureis basedon a building
blockapproach.Primitive systemactivitiesare characterizedfirst. Oncetheseactivitiesare
understood,complexexperimentsinvolvingthe interactionof primitive activities,as well as
complexactivitiesbuilt from thebasicprimitives,maybeconducted.Thisorderlyprogression
insuresuniform,thoroughcoverage and maximizes the ability to locate the cause of unexpected

phenomena. The steps in the methodology include:

1. Initial checkout and diagnostics.

2. Programmer's manual validation.

3. Executive routine validation.

4. Multiprocessor interconnect validation.

5. Multiprocessor executive routine validation.

6. Application program verification and performance baseline measurements.

7. Simulation of inaccessible physical failures.

8. Single processor fault injection.

9. Multiprocessor fault injection.

10. Single processor executive failure response characterization.

11. Multiprocessor system executive failure response characterization.

12. Application program verification on multiprocessor system.

13. Multiple application program verification on multiprocessor system.

The first six tasks in the list validate the fault-free baseline functions of the system, items

seven through eleven characterize the fanlt-handling capabilities of the processors, and the last

two validate the total integrated environment of the system. This report presents fault-free

baseline performance measurements. In general, the methodology follows two parts, a fault-

free validation followed by a fault handling part. The importance of the fault-free validation has

been shown in previous reports[13, 14], and the methodology presented in this report follows

the same line.

7

3 Implementation of a Validation Environment on AIPS

The validation process is difficult in that it requires observability and controllability of the

system under investigation. The observations include measure of performance and behavior

while the controllability includes adjusting the workload, as well as injecting faults. To aid

in the validation process a validation environment is implemented. The environment combines

work done on FIAT and PIE at CMU. This section describes both FIAT and PIE architectures,

the combined validation architecture for AIPS, and its implementation[I].

3.1 Architecture of the FIAT Validation Environment

FIAT, Fault Injection-based Automated Testing, is a prototype experimental environment used

to explore validation methodologies for fault-tolerant systems. The goals of the FIAT project are

to develop the requirements for an automated software-implemented fault injection environment

and to gain an understanding of software-implemented fault injection methodologies.

Validation requires the ability to monitor the system under test, the ability to control the

system to induce faults and other operating conditions, as well as the ability to repeat tests to

identify the source of system deficiencies. These requirements imply a test environment capable

of automatically inducing faults and monitoring system behavior. The underlying methodology

guiding the FIAT validation process is as follows:

1. Specify a system architecture, including hardware and software. FIAT allows the user

to specify the architecture through a combination of emulation, where actual software

tasks or hardware components are represented by a software task emulating the actual

behavior, or through the use of FIAT software on the actual hardware/software structure.

2. Profile the fault-free behavior of the system to determine a nominal "operation point".

Profiling gives general information regarding the execution of the systems, such as task

execution order, execution time, memory usage, and possibly bounds for data variables.

. Select a set of faults and profile the system behavior with these faults present. The fault

set is chosen to represent actual faults which the user is interested in studying. These

can represent faults occurring in either the hardware or the software of the system and

are used to gauge the effect of actual faults on the system.

, Analyze experimental data and use the results to support validation requirements and

other experiment goals. Measures, such as fault latency, error recovery probability, and

the like, can be extracted through experimental analyses and used to support validation

requirements such as parameters for Markov models. Given the goals and the desired

validation methodology, FIAT was designed to support the fonowing functions.

Architecture Development: The target architecture is divided into portions which are to be

emulated and portions which will use the implementation employed by FIAT. This allows

the user to design and evaluate a system without customized hardware, software, or a large

initial effort. The hardware, software, and communications structure of FIAT is general,

so it may emulate a variety of architectures or be applied to an actual implementation.

FIAT is oriented towards a message-based, replicated structure, where messages are passed

via the FIAT communication channels and the replicated structure is emulated by FIAT

hardware and software tasks.

Fault Injection: The goal is to insert data representative of "actual" faults into the system

to gain an understanding of system operation under abnormal conditions. The injected

faults may be "actual" faults under study or the manifestation of faults - errors. FIAT,

through software-implemented fault injection, induces faults or the appearance of faults

in a system by modification of the software image or through the execution of special

software designed to emulate faults. Software-implemented fault injection was selected

for the following reasons:

1. Systems to be validated have a substantial software component. Software fault injec-

tion allows penetration into the software portion of the system as well as exploring

the interaction of software with hardware.

2. Software-implemented fault injection is less expensive, in terms of time and effort,

than hardware-implemented fault injection.

3. Software-implemented fault injection is functionally complementary to hardware-

implemented fault injection and does not exclude it.

4. There is a need for a testing methodology to validate software-implemented fault

tolerant strategies.

Software-implemented fault injection has its limitations, mainly in its inability to force

low-level errors, such as gate output stuck-at faults. However, designers are interested in

the behavior of the whole system (hardware and software) rather than the manifestation

of individual faults. Furthermore, a large amount of the hardware functionality is visible

through software.

Automation and Unity: The quality of experimentation is a function of the fidelity of the

fault injection method and of the capability of the system to inject (test) as many faults

as possible per unit time. Automation includes both experiment development time and

9

experimentruntime processes. To be effective, the various components of the system

(e.g. workloads, fault classes, experiments and data analysis) must be integrated under

one comprehensive environment, which supports the process of preparation, debugging,

runtime control, and data analysis.

The FIAT methodology, like the validation methodologies presented earlier, include profiling

of the fault-free behavior followed by the fault behavior of the system. The application of the

FIAT validation methodology on AIPS includes both parts. The fault-free validation process

was initiated by the integration of the PIE environment on AIPS. The integration of PIE on

AIPS allows the characterizing the fault-free behavior of the system as well as instrumenting

the system for future fault injection work. Within the FIAT methodology, PIE provides the

Architecture Development and the Automation and Unity support and PIE is especially useful

for the first two steps in the validation methodology.

3.2 Architecture of the PIE Validation Environment

The need for a validation environment stems from the complexity of today's systems and the

difficulties which arise in the application of the validation methodology. Moreover, the ability

to predict and model the behavior of a system, especially a dependable real-time system such

as /kIPS, first requires an understanding of the behavior. Two parts to the understanding

are typically needed: the first is the understanding used in the design and implementation of

the system, while the second is the understanding and modeling of actual implementation to

support the design assumptions. The second part requires the observation of the system in its

actual environment.

The process of observing a system in its actual environment is the goal of the PIE, Program-

ming and Instrumentation Environment, project at CMU. PIE is a powerful, general purpose

tool which supports the monitoring and visualization of programs during execution. This re-

port describes the PIE system as configured for monitoring the /kIPS fault-tolerant computer

system[l].

The PIE system, depicted in Figure 1, consists of a set of integrated tools for automated

performance characterization of a real-time, parallel/distributed, fault-tolerant system. Cen-

tral to this environment is the concept of performance degradation prevention, detection, and

avoidance. Performance degradation prevention is the process of predicting, before completion

of the implementation process, the performance of a parallel algorithm on a specific parallel

architecture. Performance degradation detection are the set of techniques applied after the cod-

10

ing process.Performancedegradationavoidanceis arun time process consisting of dynamically

restructuring the application or the system in the presence of predicted or detected performance

degradations.

Prevention

- Permod

- Contention

- Decomposition

- Synchronization

- Imbalance

- Advisor

PIE

Detection

' PIEscope

Sensmap

lr
Avoidance

Hardware

- Special purpose

Software

-Avoidance

algorithms
& policies

I Hardware Platforms I(SUN, DECstations, Encore Multimax, Warp, Aips)

Figure 1: Organization of the PIE System

In this context we will discuss mainly the performance degradation detection, as being the

process of fault-free validation. The PIE environment consists of several subsystems for assist-

ing a programmer in developing computations and observing their run-time behavior. These

systems are:

PIEmacs: an editor with special features for inserting monitoring hooks into a computation,

PIEmon: a performance and correctness monitoring facility including the AIPS context-switch

monitor,

PIEman: a database manager which correlates the text of a computation (development-time

information) with information about the execution of the computation (run-time infor-

mation), and

1l

PIEscope: a graphicspackagefor presentingthe run-time and developmentinformationto
the programmer.

In PIE, a programmereditsa computationusingPIEmacs,an extensionof Gnu-emacs3.

PIEmacsautomaticallymarksprogram constructsfor affixing sensorslater usinga special
compilerpreprocessor.In addition to the automaticallymarkedconstructs,the programmer
is permittedto marka computationin placesof specialinterest.Thedevelopment-timeinfor-
mationwhichPIEmacsgeneratesas it marksa computationis deliveredto PIEman,the PIE
databasemanager.PIEmanbuildsa databasefrom thisprogramdevelopmentinformationand
latermergesthiscompile-timeinformationwith dataretrievedat run-time.Therun-timeinfor-

mationis retrievedby PIEmon,thePIE performancemonitor' Theinformationis presentedto
theprogrammervia PIEscope,a graphicspackagewhichdisplaysseveralviewsof the structure
of a computationaswellashowthe structureswereexecuted.

3.2.1 PIESCOPE

This paragraphdescribesPIEscope,the current graphical user interface for the PIE system.

PIEscope provides graphical views of the development and execution of a user's program, using

the X-Windows, Version 10, windowing system. PIEscope provides three development-time

views and three execution-time views. The development views are:

1. roadmap: a tree-like display of the definition structure of the user's Program.

2. use roadmap: a tree-like display of the instantiation and static invocation structure of

the user's program.

3. sensmap: similar to the roadmap but also includes the user's explicitly-placed sensors.

The user uses the sensmap view to enable or disable the sensor firing during the program

execution.

The execution-time views are:

1. barscope: a bar graph of the execution of the user's program.

2. cpu barscope: a bar graph depicting processor utilization of the user's programs.

3. animation tree: a tree-like display which replays the dynamic invocations (and destruc-

tion) of the structures in the user's program.

4. max-animation tree: similar to the animation tree except that the destructions are not

shown, so the user can see the maximum amount of resources used by the program.

3Gnu_emacs is a screen-oriented text editor supported by the Free Software Foundation.

12

Eachviewhasmanyfeaturesfor zoomingin and filtering the vieweddatawhicharenot de-
scribedhere.

3.2.2 PIEMON

ThePIE performancemonitor is a facility for observingcomputations.It is mnlti-level,con-

sistingof user,run-time and kernellevels.A monitor observesand recordsevents.An event
is anobservable,time-stampedobject occurringduring the executionof a computation;it is
thebasicunit of informationfor observability.Eventsconsistof twobasictypes,control-driven
anddata-driven.

• A control-driveneventdesignatesa specificlogicalpoint (state)in acomputation'scontrol
flowandincludesthetimewhenthat statewasreached.Examplesof control-drivenevents

arethe inceptionand terminationof processesor the start of an iteration of a program
loop.

• A data-driveneventis a timestampedmodificationof, or demandfor, computationdata.
Data-driveneventsdonot containdirect informationaboutcomputationstates,but they

describedataaccesspatterns.Althoughinferencescanbemadeaboutwhat computation
statesarepossiblefor aspecificdata-drivenevent,theycanbemadeonly aftercomparing
the eventto wherethe dataareusedin the computation'stext and with an analysisof

theexecutionhistoryprovidedby control-drivenevents.

Sensorsdetect the eventsof a computationand preparethem for retrieval by collection
instrumentation.This instrumentationis asoftwaresystemwhichappendsaneventto theevent

recordof the computation.After anexecutionterminates,PIE selectsandfilters the eventsin
the eventrecordusinga relationaldatabase,constructedat developmenttime, containingthe
static structuresof a programaswell the semanticand temporalrelationsbetweenthem. The
structurescontainsensormarkssothe eventscollectedduringexecutioncanbemappedonto

their correspondingcomputation.

Eventsareobservedby a monitoringenvironmentwhichextractsdevelopmentandrun-time

informationaboutsequentialandparallelstructuresof acomputation,andaboutits execution.
The assemblageof mechanismsand protocolsthat makeup this monitoringenvironmentis
calledthe monitor.

13

3.2.3 Setting Up an Experiment in PIE

Because PIE is the vehicle for fault-free validation, it is important to be comfortable with

frequent references to the environment later in this report. The following brief example of using

PIE is condensed from paper in IEEE Computer[15] and should be read if greater fanfiliarity

with PIE is desirable.

A Problem Application Assume a user desiring to fault-free validate a matrix multiply ap-

plication on a 16-processor shared-bus machine. The basic structure of the application consists

of passing weE-partitioned parts of two matrices to several child tasks. Each process first exam-

ines the parts of matrices it is passed and decides whether they are small enough to operate on

without partitioning them further and passing them on to its own child process. After making

the decislon, each process iterates through its matrix parts, multiplying each pair of row and

column and writing out the result.

Figure 2 depicts parts of the text of the application via three windows of PIEmacs. The

top window in Figure 2 shows a part of the definition of the application's multiplier procedure,

multproc. It includes a variable declaration of the type multiply, an instance of an activity

or act, as shown in the middle window. Activities or tasks are process-like units of parallel

work which, when spawned from the same application, are able to share and operate on global

memory. Notice that multiply contains a call to multproc. Multproc implements the basic

matrix partitioning and multiplying functions described above. After the value of a matrix

element is calculated, it is written out using put, shown in the lowest window. It is an instance

of an software object called opt, used to operate on global memory. Entities of this type may

be shared by several activities. The only feature of put that ought to be understood here is the

sync, a synchronization function that enforces mutual exclusion on global operations. Here,

sync ensures that only one result may be written back to global memory at a time.

Figure 3 is an automatically generated PIEscope roadmap visualization of the application's

principal constructs. The roadmap view is the first step in PIE for bridging the roadmap

(Figure 3) to a corresponding textual entry (Figure 2). VChen a box is touch-selected by a

mouse, as is shown by the enlarged border surrounding the box labeled [c] multproc, the

PIEmacs window automatically moves its cursor to the head of the corresponding textual

construct, in this case, a call to the mul'cproc procedure as shown in Figure 2.

Having Visualized the structures of the application, it is time to gather performance infor-

mation. PIE can generate performance views such as histograms, but these are ancillary to a

more informative format which will be shown shortly. VChen an application, with a potential

14

_u]tl--'r-oc(xl, x2, .HI, 92, _x, _,_, __.z)
int. xi, x2, _$, ._t2, r_,x, r,;N, sz.*,

{

ir, t ex, e U, i, j, k;
f'l,:,at t, tr,,F,, tr,',t:.2.*.

r_ult il-"iU subt ask;

e× = x2 - xl + it
ek(= U2 - '._41 "* i;
if <ex > eL4) {

i£ (ex > Mx) {

s.ut:,task (xl, (x± + ex / 2 - ±), UI, 92, mx, r_,_, sz);
f,ultprv, c((x± + ex / 2). x2. _l:i.92. re,x. +,,+.c-.z);
jc, ir,(subtask) ;
retur r,;

}

i_ (e_ > t:,L4) {
subtask (xl, x2, N±. (U1 + eN / 2 - i): re.., r,'ej, __.z);
r,,ultpr-oc <x±, x2, (L4i ÷ eN / 2), U2, F,>', r,,H, sz);
join (£ubta_vl<.) ;
r-etuPn;

}

I_;I :# _ | =1u_-T,,t,-'!_l/u"f=-i,_.-'_liI,,]_]] _, 4I1#1_--;_--,,. _ };..--_ _111l.] i_a__l_ ,,,hi, ,,, :;
_ot

MulEit:']M(X±. X2. 9&..q2. _X. m9. SZ)
int x±. x2. 91..q2. rex. r%4. sz;

{

opr _loat put(x, _)
it_t x, U_

{

sUnc(put){
expc_-t(_atrix_dataEx3[_]);

}

}

Figure 2: Part of a Matrix Multiply Program Text

parallelism of four, runs only two or three tasks simultaneously, the programmer knows that

they should investigate any program construct that might force a multiplier to wail namely the

sync (just discussed) and the join (an example is shown in the top window in Figure 2) which

a multiplier executes when it wishes to join its children. To get this information with Pig is

simple. Figure 4 shows a number of darkened boxes, [A] multiply, [S] Sync and several cases of

[a] Join. The [A] multiply represents the multiplier tasks and [S] Sync is the synchronization

function in the put operation discussed earlier. Each [a] Join represents an instance of a join

function. The darkening of these boxes indicates that the programmer, using a mouse-click,

has selected them to be automatically observed during execution.

15

1 I
1Dlot '_-_ I

l Ololr--_,t I ---->

IOl-__i_ I

IDI_ _J_ I

il, [0t.._ .._,,r, j
,'i'

1/IIt{ol --' _ I

Figure 3: Part of Visual Representation of Computation

Examining the Results PIE's foundations for instrumenting computations includes soft-

ware event sensors, hardware event sensors, and hybrid event sensors. Currently, however,

computations in PIE are instrumented using only software sensors. During run-time PIE en-

sures that when a selected construct executes, important information is automatically collected

about the construct. An example of PIE's principal formats for visualizing performance data

is shown in the upper two views of Figure 5. The top view of Figure 5 is called the execution

barscope view. Time is measured in seconds (with micro-second resolution) on the horizontal

while the tasks of the computation are ordered on the vertical. Although it is possible to show

any part of a computation, this particular view shows only the tail end of the execution from

about 2.6 to 2.8 seconds.

The execution of each task is depicted by the concatenation and occasional "overlap" of

several textured rectangles, each representing a particular episode in the task's history. A

rectangle is "in front of" another rectangle if the entity represented by the rectangle in the

forefront is contained within the entity represented by the rectangle behind it. In the top view

of Figure 5, for example, waits due to a sync show up as dotted rectangles alternating with

16

] , , , , ,,,,)

II
I I
! I

II

! !

II
i i

11

II
i i
I I

U

_ IOlOlr-,-t I

1[Jl_J "_ ,._o_

p==-
lg_..._tt_i,1 ,_t.,_ I

I _.._. lisle] _._ I

li:':a:.,.1.io3j

" Isl_l ,,,,_t_,-,_<I
'"_1

¢licl< L¢ ie,_i¢it,_ 1¢'t. _ ..cil# 0¢ ZOo_ rRc. or t_ "_ to _aoet_.

Figure 4: Using the Visual Representation to Enable Sensors

several dark rectangles. The dotted rectangles are actually in front of of a single dark rectangle

representing the generic body of the task. The slashed rectangles at the end of tasks zero, two

and three are instances of parents waiting to join a child.

The middle view of Figure 5 is called the cpu barscope view. It shows the task-to-processor

assignment of the computation during the same execution period shown in the top execution

barscope view. Time is along the horizontal axis and the machine's processors are ordered on

the vertical. Opposite each cpu are alternating sets of textured rectangles representing identifi-

able tasks. White rectangles are periods when none of the computation's tasks are running on

the associated cpu. When any rectangle in either barscope view is selected by the mouse, the

cursor in the PIgmacs window is automatically moved to the head of corresponding construct

in the program text. In Figure 5 for example, a sync-wait rectangle has been clicked on in

the execution barscope. The semantic gap is now bridged allowing the programmer to ana-

lyze the computation's performance using data automatically projected onto the computation's

structures. In addition, the visualization helps the functional gap: the gap between the extent

17

to whichperformancemonitoringmerelyreportshowcomputationsbehaveandthe extent to
whichit helpsguideusersto the sourceof their problems.

18

4'l, lp._lh,'m_ +It+l*: l_,t','l_l'.+

opt _ioat put<x, U)
int x, U;

{

_unc(put){

export(matrix_dataExJCu]);
}

}

{
}

a<SIZE, SIZE) [_.];

act

_ultipIM(xi, x2, Ui, U2, mx, mU, sz)
int xi, x2, Ui, U2, mx, m U, sz_

multproc(x_,x2,M!,_2,mx,m_,sz)_

Figure 5: ToP: Part of a Parallel Execution of the Computation on 16-

Processor Machine MIDDLE: Corresponding Thread to cpu Assignments

BOTTOM: A PIE Editor Window

19 ORIGINAL PAGE !$
OF POOR QUALITY

3.3 Architecture of the AIPS Validation Environment

The implementation of PIE on AIPS is a first step in the implementation of the FIAT environ-

ment on AIPS. FIAT requires the instrumentation of the software system to achieve controlla-

bility of the fault injection and monitor the activities of the system. This instrumentation is

provided by the sensor mechanism used in PIE[16]. Additionally, the prior implementation of

PIE on AIPS provided a data collection method to be used with FIAT, and the Automation

and Unity desired for a validation environment.

The integration of PIE and FIAT is presented in Figure 6. The left half of the figure is

the PIE instrumentation, while the right half is FIAT fault generation and experiment devel-

opment. The joining of the two environments is with the database and the execution unit.

The database merges information regarding the workload structure from the PIE side with the

fault information from the FIAT side. This joint information is then used for the experiment

execution and subsequent data processing.

Figure 7 shows a general overview of the hardware and software configuration of this system

and the continued extension for the FIAT requirement for AIPS/ALS. The hardware configura-

tion of the system is extremely simple, because PIE is a software based monitoring system. The

hardware components consist of one or more AIPS FTP nodes, the AIPS VAX host, and the

PIE workstation. The FTPs are connected to the AIPS VAX via a serial communication link.

This link is used to load system and user programs into the FTPs, and to retrieve monitoring

data collected during program execution. The connection between the AIPS VAX and the PIE

workstation can be implemented in several of ways. If the PIE workstation is to be located

near the FTPs and the AIPS VAX, a local area network or a fast serial line can be used. If

the PIE workstation is not within physical reach of the/kIPS VAX, remote modems have been

used successfully to operate the system.

The software components of the PIE KIPS monitoring system can be divided into three

groups. The first group is comprised of code for use on the AIPS FTPs, which includes the

kernel monitor and the user monitor. The kernel monitor gathers information about context-

switches performed by the Ada run-time, while the user monitor collects information about

Ada language constructs in the user's program, such as rendezvous, task creations, or simple

procedure calls. The second group is the DCL (Digital Command Language), which runs on the

AIPS-VAX host and interfaces with the AIPS VIPS debugger program; its function is to read

data from the FTP's memory and reformat it for transmission to the PIE workstation. The

last group of software components are the PIE tools which reside on the workstation, including

PIEmacs, the PIE Instrumentor, and the PIEscope.

20

........ Source (Fault

........... Code _,Classes

.'.'.. :.-.:,:,:,-...

i L Preprocessor L Lib::;l;s)-I"1 Instance I
::.. __ _ { Generator i " :

F!i!iYi!::..Obi_!!!ei¢i!_i!i::i::i!i_::ili_i!i!::i_ii!!i:_I :i::i::::iiiiiiiiii_iiiii!_iD:ev_iopmentTime...........] T L___" i '-_] "

::_;_:-i-_.i-t-:i:,oi_i_iiiiiiiii::i::::_....... :!:!Sensor ProflJ. - '-_:::-..... : '"

l I Experiment"

iI Compiler Attachment I Descrlptlon

t Libraries I Compiler

. .L. '+ .

;e

::i:!ii_i!:iiiii!i_i!_!_!il;ii!iiii!iiiiiii_iii!i!iii!ii_iii!:_i_::_!S c r I p t

Postprocessor

Runtlme Experiment
Controller

Execution Data Collection

Data Analysis

Figure 6: Integration of PIE and FIAT

This report concentrates on initial work to instrument and monitor the functionality of the

AIPS fault-tolerant distributed real-time system using PIE, the Programming and Instrumenta-

tion Environment. Near-term extensions include exploring the bounds of the correct functioning

through fault injection and the integration of the FIAT, Fault Injection and Automated Testing

Environment, software.

21

I

fr

AIPS Fault Tolerant Processors

Serial t_
Comm Link

PIErnacs EditorI

PIEscopeDisplay

I AIPS /

Run Time (

System _, Run Time I

AIPS Vax

Program

/ /

0

©
Z

0
0

OR

0
E

()- TPIE Workstation _-.

L

J

Figure 7: Overview of Configuration for the PIE-AIPS Monitoring System

22

3.4 PIE Software

In this section, the design and the implementation details of the PIE software system onto the

AIPS/FTP are presented.

3.4.1 PIE Software on the AIPS FTP

The PIE monitoring run-time system usually has two main components. The component for

generating data is called a sensor, while the other component is the collector which processes

and writes the generated data to a file for later analysis. However, the AIPS system used in

the laboratory for the development of the prototype AIPS model lacks external data storage.

Thus, in this implementation, all data collected are stored in memory and retrieved at a later

time by a DCL script executing on the AIPS VAX host. Other possible implementations are

discussed below.

The design of the user sensor, which generates system monitoring data, is straightforward.

When a user sensor is executed, it records information about the associated Ada language

construct and the time at which this event occurred into a memory buffer. However, the labo-

ratory prototype AIPS system has only 2 Megabytes of memory, with only about 50 Kilobytes

available for the storage of user sensor data, so priority has to be given to efficient usage of this

resource. For this purpose, a simple memory manager is incorporated into the user sensor.

First considered was a memory manager design where each Ada task in the user's program is

given an equal share of the 50K of memory and normal data collection for each task continues

until the task exhausts its private memory buffer. Clearly, this is not an efficient use of this

scarce resource, because different tasks might have different sensor firing rates, and some tasks

may not have any sensors. On the other design extreme, each task's sensor data could be written

into a single common buffer achieving the most efficient use of memory, but the synchronization

overhead incurred to prevent race conditions on sensor operation would make the system useless.

The implementation of the PIE user sensor on AIPS is a compromise, balancing efficiency

and speed, and is known as the fast bucket-switching memory manager. The basic idea is every

task has a private memory buffer called the bucket. All sensor data from the task is saved by

the sensor into this bucket. When the bucket is full, the sensor will check-in the full bucket to a

full bucket queue and check-out an empty bucket from an empty bucket queue. The queue used

for holding the full buckets is a FIFO queue in order to preserve the temporal ordering of the

buckets, while the empty queue is implemented with a LIFO queue for simpler operation. Both

queues are controlled by a single lock to prevent any race conditions. The size of the buckets in

23

this system is kept relatively small, so the memory manager can adopt to the different sensor

firing rates of the user tasks. With synchronization occurring only when buckets are switched,

the system performance is maintained at an acceptable level.

One issue regarding this bucket-switching system, which needs to be addressed before being

used for the monitoring of the AIPS system, is: what does the monitoring system do when the

empty buckets have all been exhausted? With only 50K of memory allocated for user sensor

buckets, running out of empty buckets during execution is the norm rather than the exception,

regardless of the efficiency of memory utilization. A great deal of power and flexibility are built

into the mechanism for handling the event when no empty buckets are available. The system

offers two options: the monitoring system can lose some sensor data or the system can block

further execution using the AIPS halt feature to allow the AIPS VAX host to empty all memory

buffers. The user select can switch between the two options during run time under program

control. Figure 8 shows the data collection management system.

The second option, halting the system is only intended for use during testing of application

programs when loss of monitoring data would make it harder for testing and debugging. For

a deliverable FTP control system, other solutions need to be explored, such as (1) losing data,

(2) configuring the FTP with external storage, (3) moving the data to another computer that

has an external storage device, or (4) storing the data in non-volatile memory. These other

solutions are not further explored here.

However, the current implementation of the PIE monitoring does support two different meth-

ods for losing data which can be selected to add additional flexibility to the/kIPS user sensor.

In the first method, all further sensor data will be lost for tasks which cannot obtain an empty

bucket, allowing the user to record a complete picture of the beginning of the execution until

memory is filled. In the second method, the oldest full bucket is recycled, which allows for

a good view of the end of the computation 4. This method is especially useful for diagnosing

conditions inside the AIPS system just prior to some type of failure.

On the kernel sensor side, one 5K buffer is used to store context-switching information.

The more complicated mechanism, used to manage the user memory buffers, is not needed here

because the kernel is a single task with a fairly steady firing rate of about 40 ms between context

switches. When the buffer is full the same options available in the user sensor, dropping data,

blocking further execution, off-loading the data, etc., are also available in the kernel sensor.

4The last two buckets of every task are protected from recycling to prevent a highly active task from domi-

nating all the memory buckets.

24

Context switch

seRsor

_ Kemel Bufler_

_ Empty Queue

AIPS VaxDCL script

User

Sensors
- Multiple user

L I Ill tasks

eotption

Full Queue

Figure 8: The User and Kernel Sensors on the AIPS FTPs

3.4.2 PIE Software on the AIPS Host

The only PIE software residing on the AIPS VAX host is a DCL script, serving as the data

transfer agent between the AIPS FTPs and the PIE workstation. As described above, the data

collected by the the monitoring sensors on the FTPs are kept in memory. When the AIPS

FTPs are ha]ted 5, either under program control or when execution has been completed, the

DCL script will retrieve the sensor data to the VAX host through the use of the memory dump

facility of the VIPS debugger. Additionally the DCL performs some data compaction to speed

the data transfer to the PIE workstation.

sit should be pointed out that halted here means that the AIPS monitor is invoked and the real-time clock

and two of the three interval timers are stopped. The FTP itself is not halted, and the processor continues to

execute instructions. This feature is particular to the laboratory prototype.

25

The use of the interpreted DCL script language has made the memory retrieval process fairly

slow. As part of a future enhancement, the functionality of the VIPS memory dump and

other relevant commands could be incorporated into a compiled program dedicated to the PIE

memory retrieval task.

3.4.3 Workstation Software

The PIE workstation software is a complete program development environment. The AIPS

Ada program which is monitored must first pass through the PIEmacs editor. This modified

gnu-emacs program provides a complete editor for program development, plus it also parses and

extracts important Ada syntactical information from the user's Ada program. This information

will later enable the PIEscope tool to interpret the data collected during execution and present

the information clearly. After the program has been developed to the satisfaction of the user, the

program is then automatically modified by the PIE Instrumentor. The Instrumentor inserts the

software sensors into the proper place in the user's program. This modified source code is ready

for compilation on the VAX host and execution on the/kIPS FTPs. Finally the data returned

from the FTPs is analyzed by the PIEscope and graphical views of the data is presented to the

user. It is not within the scope of this report to detail the complete design and implementation

of these tools; several references give detailed information[I5, 17].

26

PIE._:)i:_ }

Figure 9: PIE Workstation Software Diagram

27

4 Experiment Design and Results

This section contains the description and experimental results of three Ada test programs. Each

of these test programs are designed to exercise and test one or more functions of the AIPS fault-

tolerant run-time or the Ada language run-time. All the experimental data presented below

has been verified by repeated trials.

Two versions of each program are presented. The first versions were run at no specified

priority, which is priority zero by default. The second versions were run at the highest user

priority possible (96). The only higher priority task is the fast FDIR (Fault Detection Isolation

and Recovery) routine. The priority-setting mechanisms require that the high-priority tasks be

subtasks to the program's main task. Thus, the second versions of the test programs have been

rewritten to reflect this necessity. Both versions begin with a delay of 10.0 seconds to allow the

AIPS run time to initialize itself. Appendix A provides raw data and pictorial images from the

PIEscope package. Data presented in this section are taken from the PIEscope images in the

Appendix.

4.1 LoopTest

The LoopTest is conceived to test the AIPS run-time system overhead. The Low priority

LoopTest program is simple: consisting of two loops, one inner loop and one outer loop, each

iterating a fix number of cycles to act as a synthetic workload. The complete program is listed

below.

procedure looptest is

NUM_ILOOPS: constant integer := 1000;

NUM_OLOOPS: constant integer := 10;

fred: integer;

begin

delay I0.0;

for i in I..NUM_OLOOPS loop -- outer loop

for j in I..NUM_ILOOPS loop -- inner loop
fred := 3; -- fake work

fred := fred * 4 + 5;

fred := fred + j;

end loop;

end loop;

end looptest;

Using the PIE kernel monitoring feature, all context-switches during the execution of the

28

test are recorded. The PIE systemcan identify the task whichcorrespondsto the body of
the test program. The context-switchingdata collectedreflectsan accuratemeasurementof
the total cpucyclesavailableto the user'sprogramrunningat a non-specified (that is, zero)

priority. Since there are no requests of system services in the program, extra context-switches

are not caused by the test program. Hence, the user's program will be time-sliced with all the

AIPS priority 0 tasks (self test_ the three CRT display tasks, and the MAC display task). By

comparing the total time the looptest task is switched-in against the total time of the program

execution, one can see the total percentage cpu utilization for the user's program. The data

collected for LoopTest show the utilization is only 60.61% under these conditions.

In the high priority version of LoopTest, the low priority test is placed in a subtask set at

priority 96. The complete program is listed below.

procedure looptest is

TASK type looptest_task is

PRAGMA priority(96);

ENTKY start;

END looptest_task;

TYPE looptest_task_ptr is access looptest_task;

a_loop: looptest_task_ptr;

TASK body looptest_task is

NUM_IL00PS: constant integer := 1000;

NUN_OLOOPS: constant integer := I0;

fred: integer;

BEGIN

for i in I..NUM_GLOOPS loop -- outer loop

for j in I..NUM_ILOOPS loop -- inner loop

fred := 3; -- fake work

fred := fred * 4 + 5;

fred := fred + j;

end loop;

end loop;

END looptest_task;

BEGIN

delay 10.0;

a_loop := new looptest_task;

a_loop.start;

END looptest;

As before, PiE's kernel monitoring feature records context-switches during the execution of

the program. However, the high priority results are much different. Now, the looping task

runs mainly uninterrupted, except for the steady 40 ms execution rate of the redundancy

management task, FDIR, which is run at highest priority. Each context switch takes about 1.5

29

ms,whichisequalto thetimefor acontextswitchto theFDIR, the executionof theFDIR, and
the context switch back. These interruptions account for a total switched-out time of 9.28 ms,

or about 3.86% of the looping tasks computation. That is, the looping tasks' cpu utilization is

96.14%; this is in approximate agreement with LoopTest.

4.2 MemTest

The MemTest is designed to demonstrate the characteristics of the current memory manager in

the Ada run-time system. The memory manager is implemented using an unordered linked-hst

to maintain the free memory blocks. An allocation for a new block is done by searching down

the linked-llst until either the end of the list or an element with a block of memory greater than

the requested allocation is found. The sequence of allocations and deallocations in this test is

designed to create a free list with many small memory blocks at the head of the list, before

measuring the performance of a large block allocation.

The program first allocates a large block of memory, the size of 300 integers, and deallocates

it to obtain a reference time for later comparison. Next the program allocates storage for a

single integer and repeats the allocation 300 times. Then the 300 integers are freed. Finally,

a large block identical in size to the first large block is allocated and freed. Once again this

program is running at the default priority (zero), and has an initial delay of 10 seconds. The

program is listed below.

with unchecked_deallocation;

procedure nmemtest is

NUM_ALLOC: constant integer := 300;

type int_array is array(1..NUM_ALLOC) of integer;

type int_array_ptr is access int_array;

type integer_pit is access integer;

fred: integer;

my_int: array(1..NUM_ALLOC) of integer_pit;

my_intarray: int_array_ptr;

procedure free_int

is new unchecked_deallocation(integer, integer_ptr);

procedure free_array

is new unchecked_deallocation(int_array, int_array_ptr);

begin

delay I0.0;

for i in l..l loop -- allocate and free first bigblock

my_int_array := new int_array;

end loop;

3O

free_array(my_int_array);

for i in I..3 loop -- allocate lots of little blocks

my_int(i) := new integer;

end loop;

for i in 4..NUM_ALLOC-3 loop

my_int(i) := new integer;

end loop;

for i in NUM_ALLOC-2..NUM_ALLOC loop

my_int(i) := new integer;

end loop;

for i in I..NUM ALLOC loop -- free all the little blocks

free_int(my int(i));

end loop;

for i in 1..I loop -- allocate the second big block

my_int_array := new int_array;

-- should take much longer than first

end loop;

end nmemtest;

The data collected from this test show the memory manager takes a constant time to perform

an allocation if the memory request can be handled with the first free block in the linked-list.

The allocation time of the first large block is identical to the time for allocating the subsequent

small blocks, each operation taking about 1.5 ms. However, if the memory manager has to

traverse the list to find a large enough block to fulfil/the request, the time needed to perform

the allocation is dependent on the number of links it needs to travel. In the case of the MemTest

program, the number of links is 300, and the time required to allocate the second large block

is over 14.5 ms, almost a 10 fold increase, or approximately 43/1s per link traversed.

Examining the context switch behavior, we see that no context-switches occurred during the

first or last memory allocations, so we can expect that the memory allocation times under high

priority to be similar. More generally, the total switched out time was 218.6 ms, or about

49.98% of the execution.

The complete listing of the high-priority version of MemTest is listed below. The task is

subtasked to allow for a priority of 96.

with unchecked_deallocation;

procedure nmemtest is

NUM_ALLOC: constant integer := 300;

type int_array is array(1..NUM_ALLOC) of integer;

type int_array_ptr is access int_array;

type integer_ptr is access integer;

fred: integer;

my_int: array(I..NUM_ALLOC) of integer ptr;

31

my_int_array: int_array_ptr;

procedurefree_int
is new unchecked_deallocation(integer, integer_pit);

procedure free_array

is new unchecked_deallocation(int_array, int_array_ptr);

TASK type rum_task is

ENTRY start;

PRAGMA priority(96);

END nm_task;

TYPE nm ptr is access run_task;

rum : nm_ptr;

TASK body nm_task is

begin

ACCEPT start;

for i in 1..1 loop -- allocate and free first big block

my_int_array := new int_array;

end loop;

free_array(my_int_array);

for i in 1..3 loop -- allocate lots of little blocks

my_int(i) := new integer;

end loop;

for i in 4..NUM_ALLOC-3 loop

my_int(i) :: new integer;

end loop;

for i in NUM_ALLOC-2..NUM_ALLDC loop

my_int(i) := new integer;

end loop;

for i in I..NUM_ALLOC loop -- free all the little blocks

free_int(my_int(i));

end loop;

for i in 1..1 loop -- allocate the second big block

my_int_array := new int_array;

-- should take much longer than first

end loop;

end r_m_task;

begin

delay 10.0;

nm := NEW nm_task;

rum.start;

end nmemtest;

As expected, the memory allocation test results are mainly unchanged under high-priority.

Here, the initial memory allocation took 1.7 ms, and the final allocation ran for 14.7 ms for an

8.5 increase in time, or again 43#s per link traversed. Further analysis is needed to determine

code portions which use this allocation routine, (hence are subject to this behavior) and how

this behavior may affect the performance of hard-dead]_ine rea]-time tasks. The collected data

32

indicates that the total switched out time was much improved with only 7.7 ms spent switched

but or about 3.43% of the total execution.

Draper Laboratories concur with the assessment of unpredictability and poor performance

for the Ada memory allocation routine. They state the cause as an inefficient Verdix implemen-

tation, and do not consider it an important problem. Their basis, for the lack of importance,

is that "... in most real-time systems, dynamic task (and therefore memory) allocation is not

performed during critical portions of the code. Most memory allocations are done during elab-

oration or during specific initialization modes. If a requirement for dynamic memory allocation

were to be specified, the memory allocation routines would have to be modified."[18] With PIE

and the fault-free validation methodology uncovering this normal behavior, the usefulness of

the methodology in uncovering poor performance is demonstrated and moreover, areas which

need further investigation are defined.

4.3 ActTest

The ActTest is designed to test the efficiency and real-time characteristics of the Ada task

creation and rendezvous mechanism. The program first creates seven identical tasks. Then the

main task will perform a rendezvous with each of the seven tasks. The task finishes and exits

after the rendezvous. The main task runs at priority zero, since no priority is specified; all

seven of the created sub-tasks have priority of 96. The program again has the 10 second delay

built in at the beginning.

The low priority test is

PROCEDURE acttest IS

NUM_TASK : CONSTANT integer := 7;

TASK TYPE activity IS

ENTRY start ;

pragma PRIORITY(96);

END activity;

TYPE activity_ptr IS ACCESS activity;

fred : integer;

my_act : ARRAY (I .. NUM_TASK) OF activity_ptr;

TASK BODY activity IS

j : integer;
BEGIN

ACCEPT start DO

FOR i IN 0 .. 1000 LOOP -- Do some fake work in rendezvous

j := i;
END LOOP;

END start;

33

END activity;

BEGIN

DELAY 10.0;

FOR i IN I .. NUM_TASK LOOP -- allocate tasks

my act (i) :: NEW activity ;

END LOOP ;

FOR i IN 0 .. 1000 LOOP

fred := i;

END LOOP;

-- dummy delay loop

FOR i IN 1 .. NUM_TASK LOOP

my_act (i).start;

END LOOP;

-- rendezvous with each task

FOR i I_ 0 .. 3000 LOOP -- dummy delay loop again

fred := i;

END LOOP;

END acttest;

The collected data from this test show the impact of one low-priority task. After each subtask

is initialized, it takes about 30 ms for the main task to "wake up" from its context switch, reloop

and start the creation of the next subtask. It takes even longer for the main task to recover

from each rendezvous. Our collected data shows that these long recovery times are not due to

the execution of the other subtasks, which remain switched out during thls period. However,

the long recovery times are attributable to the other system tasks which run at priority zero s .

These system tasks must be switched in and executed each time the main task is preempted,

this is due to the ordering of all equal-priority tasks on the run queue. Note that this behavior

is not seen in the reverse when the subtasks need to be switched in, (i.e. as soon as the low-

priority main task calls the new statement to create a high-priority subtask, the subtask runs

immediately.) A similar behavior occurs when the subtasks are called on to execute their accept

statements.

Since each subtask is dependent on the performance of the main task, the total execution

time of this test is seriously degraded. Measurements indicate that the total switched-out time

was 395.8 ms, or about 50.8% of the execution time; thus the cpu utilization is 49.2%.

HoweveL the recorded results show that both the task creation time and the rendezvous time

have an upward trend. The cause of this behavior is not clear from the experimental data, but

further experimentation (by Draper) has indicated that it may be due to the sensor monitoring.

Further experimentation would be needed to accurately calibrate the influence of the sensors.

6The influence of the system threads shows that it might be beneficial to monitor the system tasks so a

complete picture of the system's behavior can be seen.

34

The graphsand the raw numbersfor the low priority executioncanbe seenin Table3 and
Figure10. Although the highpriority numbersaresmaller_thetrend is similar.

Time for starting a task Time for starting a rendezvous

(miJli-seconds) (milli-seconds)

8.085

10.931

9.029

9.227

9.426

9.821

3.407

3.976

4.104

4.236

4.372

4.636

Table 3: Task Starting and Rendezvous Times from ActTest

The complete listing of the the high-priority version of the ActTest follows.

PROCEDURE acttest IS

NUN_TASK : CONSTANT integer := 7;

TASK TYPE activity IS
ENTRY start ;

pragma PRIORITY(96);

END activity;

TYPE activity_ptr IS ACCESS activity;

TASK TYPE enclose_task IS

ENTRY starttask;

pragma PRIORITY(96);

END enclose_task;

TYPE enclose_ptr is access enclose_task;

fred : integer;

my_act : ARRAY (1 .. NUN_TASK) OF activity_ptr;

enclosure : enclose_pit;

TASK BODY activity IS

j : integer;

BEGIN

ACCEPT start DO

FOR i IN 0 .. 1000 LOOP -- Do some fake work in rendezvous

j := i;

END LOOP;

END start;

END activity;

TASK BODY enclose_task IS

BEGIN

ACCEPT starttask;

FOR i IN 1 .. NUM_TASK LOOP --

my_act (i) := NEW activity ;

END LOOP ;

allocate tasks

35

FOR i IN 0 .. lO00 LOOP

_red := i;

END LOOP;

-- dummy delay loop

FOR i IN 1 .. NUN_TASK LOOP -- rendezvous with each task

my_act (i).start;
END LOOP;

FOR i IN 0 .. 3000 L00P -- dummy delay loop again
fred := i;

END LOOP;
END enclose_task;

BEGIN

delay 10.0;
enclosure := NEW enclose_task;
enclosure.starttask;

END acttest;

The collected data from this test show that all the negative impact of the low-priority task in

the previous example has been eliminated. The main task wakes up from its context switches

immediately, and the total switched-out time is only 17.1 ms, or about 3.62%. That is, the cpu

utilization is 96.38%, again in agreement with LoopTest and MemTest. However, the upward

trend of the task creation and rendezvous times has persisted, indicating that this trend is not

priority or context-switching related. This strengthens the belief that the monitoring may be

a possible source of these trends.

One intriguing phenomenon in the high-priority version of ActTest is that three of the sub-

tasks do not exit immediately after completing their work. Activities number 3, 5, and 6 (in the

accompanying screen snapshots, Figures A.18 through A.23) take one or two context switches

before they exit. Strangely, the time spent by these activities, switched in and running, after

they have completed their rendezvous is about 2-3 times longer than the activities which do

not take a context switch before exiting. We can deduce that the extra execution time is not a

result of the task exiting since the context switches occur before the activity-end sensor fires.

Therefore, suspicion for the source of this extra execution is cast on the context-switch itself

or perhaps cast on the expense of recording the context switches' occurrences in the kernel's

monitoring mechanism. Further, this may not be an anomaly of neither AIPS nor PIE, but the

normal action of an asynchronous, preemptive priority based scheduler. This behavior of the

scheduler and how it affects the performance of hard-deadline real-time tasks must be explored

in the validation methodology, as listed on page 7, steps 3, 5, and 6.

36

Time

Time

0.012

0.010

0.008'

0.006

0.004

0.002

0.000

0.005

0.004

0.003

0.002

0.001

0.000

Time required to start an Ada task (second}

I I I I I I

2 3 4 5 6 7

Task number

Time required to start a rendez-vous (second)

I I I ,, I I I

2 3 4 5 6 7

Task number

Figure 10: Task Starting and Rendezvous Times for ActTest

37

5 Summary

This report described the implementation of the PIE system, configured for fault-free validation

of the AIPS fault-tolerant computer system. This functionality is required for the implementa-

tion of the FIAT environment on AIPS; the PIE components implemented on AIPS represent

a substantial portion of the FIAT system. Using these components, a fault-free validation

methodology was appl3ed to the AIPS system.

The PIE system has been modified to support the Add language and a special purpose

AIPS/Ada runtime monitoring and data collection implemented. Initially, several Add pro-

grams running on the PIE/AIPS system have been instrumented automatica]Jy using the PIE

programming environment. PIE's on-line graphical views show vividly and accurately the per-

formance characteristics of the Add programs, the AIPS kernel and the application's interaction

with the AIPS kernel. The data collection mechanisms were written in a lfigh-level language,

Add, and provide a high degree of flexibility for implementation under various system condi-

tions.

Beyond the demonstration of the success of the implementation of the FIAT/PIE, we have

characterized some of the critical components of the AIPS/Ada kernel. We paid special empha-

sis to the performance of the Add task management functions, communication, synchronization,

and memory management. Given the real:time application requirements of ALS, we stressed

the need for performance predictability' The collected data have pointed out a number of

anomalies. First, the MemTest example indicates the unpredictability of the Add memory al-

locator's implementation which uses an unordered linked-list to maintain free memory blocks.

Second, the ActTest program shows that the starting and rendezvous times increase linearly

with the numbex of tasks in existence; further investigation is needed to locate the source of

this behavior, as it may an artifact of the monitoring itself. Third, the ActTest pointed out

a phenomenon wherein context switches seemed to have caused longer execution time. The

collected data also show the profound effect of task priority on context switching and runtime

overhead.

The Table 4 summarizes the timing results from the experiments. These results point in the

following conclusions:

1. The PIE systems provides an automated fault-free validation environment for AIPS. Also

we proved the value of PIE as an architecture independent performance evaluation and

program development tool.

2. PIE functionality is required for the FIAT system for Fault Injection based Validation of

the AIPS for ALS.

38

Test total total cpu first last

execution Speedup switched out utilization allocation allocation

Low Priority LoopTest

High Priority LoopTest

Low Priority MemTcst

High Priority MemTest

Low Priority ActTest

High Priority ActTcst

449.840

240.722

446.44]

227.030

777.958

473.086

46.49%

49.]5%

39.]9%

177.192

9.280

218.662

7.777

395.870

17.108

60.61%

o6.]4%
51.02%

96.57%

49.]]%

96.38%

1.543

1.733

14.574

14.763

Table 4: Summary of Results (times are in milli-second)

3. With the FIAT/PIE tools in place, substantial insights into the performance intricacies

of AIPS are available.

4. Initial fault-free validation of the AIPS shows a number of anomalies in the critical areas

of task management, memory management, communication, synchronization, runtime

overhead, and the monitoring itself. Additional work is needed to eliminate or account

for any anomalies in the monitoring itself. Moreover, the discovery of these anomalies

demonstrate the benefits of the fault-free validation methodology applied to a system

under development.

5. Once discovered, those anomaJJes could either become user considerations or could be

fixed in future versions of the/kIPS and PIE monitoring. In either case the system will

become substantially more predictable and hence suitable for the real-time requirements

of the ALS program.

6. Due to the concurrent development of AIPS and FIAT/PIE on AIPS, the FIAT/PIE

system have not been yet fully exploited for AIPS validation. (It is difficult to validate a

system under development - a moving target.)

7. There is a distinct opportunity with the PIE environment on AIPS and also the need for

a fault-free validation to be performed on the final version of KIPS. The validation suite

for the final version of AIPS must be biased towards the critical (or un "lmown) portions of

the system to avoid uncovering "known" limitations such as the poor memory allocation

performance.

8. After the completion of the fault-free validation, we are strongly suggesting the critical

need for fault injection based validation of AIPS. Of special concern are the common

mode failures (which include most "bugs" in software), communication protocols and

multiple single mode failures. For this purpose an opportunity exists in using the proven

methodology of FIAT/PIE and the availability of these tools on AIPS.

39

References

[1] Advanced Information Processing System (AIPS) Proof-of-Concept System INE Facility,

User's Guide, Charles Stark Draper Laboratory, 1987.

[2]W. Richards Adrion, Martha A. Branstad, and John C. Cheriavsky. Validation, verifi-

cation, and testing of computer software. ACM Computing Surveys, 14(2):159-192, June

1982.

[3] Algirdas Avigienis and Jean-Claude Laprie. Dependable computing: From concepts to

design diversity. Proceedings of the IEEE, 74(5):629-638, May 1986.

[4] W.C. Carter. System validation - Putting the pieces together. In 7th AIAA/IEEE Digital

Avionics Systems Conference (DASC), pages 687-694, 1986.

[5] Daniel P. Siewiorek, C. Gordon Bell, and Allen Newell. Computer Structures: Principles

and Examples. McGraw-Hill Book Company, 1982.

[6] Yves Deswarte, Khadija Alami, and Oliver Tedaldi. Realization, validation and operation

of a fault-tolerant multiprocessor: ARMURE. In 16th International Symposium on Fault-

Tolerant Computing, pages 8-13_ 1986.

[7] Gary L. Hartmann, Joseph E. Wall, Jr., and Edward R. Rang. Design validation of fly-

by-wire flight control systems. In AGARD Lecture Series No. 1_3, Fault Tolerant Hard-

ware�Software Architecture for Flight Critical Function, pages 9.1-9.17. NATO Advisory

Group for Aerospace Research and Development, 1985.

[8] H.M. Holt, A.O. Lupton, and D.G. Holden. Flight critical system design guidelines and

validation methods. In AIAA /AHS/ASEE Aircraft Design Systems and Operating Meeting,

1984. Paper: AIAA-84-2461.

[9] P. Michael MeUiar-Smith and Pdchard L. Schwartz. Formal specification and mechanical

verification of SIFT: A fault-tolerant flight control system. IEEE Transactions on Com-

puters, C-31(7):616-630, June 1982.

[10] Validation Methods for Fault-Tolerant Avionics and Control Systems: Working Group

Meeting !:, NASA Langley Research Center, March 1979. ORI, Incorporated, Compilers.

NASA CP-2114.

[11] Validation Methods Research for Fault-Tolerant Computer Systems: Preliminary Working

Group II Report, NASA Langley Research Center, September 1979. System and Measure-

ments Division, Research Triangle Institute.

40

[12]

[13]

[14]

[15]

[16]

[17]

I18]

SAE Committee S-18A. Fault/failure analysis for digital systems and equipment.

Aerospace Recommended Practice ARP-1834, Society of Automotive Engineers, _7arren-

dale, Pa., August 1986.

l_rank Feather, Daniel Siewiorek, and Zary Segall. Fault-free validation of a fault-tolerant

multiprocessor: Baseline experiments and workload implementation. NASA CR-178075,

Carnegie Mellon Univ., April 1986.

Edward W. Czeck, Frank E. Feather, Ann Marie Grizzaffi, Zary Z. Segall, and Daniel P.

Siewiorek. Fault-Free Performance Validation of Fault-Tolerant Multiprocessors. NASA

CR-178236, Carnegie Mellon Univ., January 1987.

Ted Lehr, Zary Segall, Dalibor Vrsalovic, Eddie Caplan, Alan L. Chung, and Charles E.

Fineman. Visualizing Performance Debugging. IEEE Computer, 22(10):38-51, October

1989.

Edward W. Czeck, Zary Z. SegaU, and Daniel P. Siewiorek. Predeployment Validation of

Fault-Tolerant Systems through Software-Implemented Fault Insertion. NASA CR-4244,

Carnegie Mellon Univ., July 1989.

Zary Segall and Larry Rudolph. PIE - A Programming and Instrumentation Environment

for Parallel Processing. IEEE Software, 2(6):22-37, November 1985.

Roy Whittredge. Draper Laboratories Internal Memo, To: Linda Alger, Subject: Com-

ments on AIPS' Anomalies in CMU Document. May 31, 1990.

41

A PIEscope Figures of the Experiments

This appendix contains graphical views of the execution of the three test programs, run at both

low and high priority. Each figure has been annotated to highlight the area of interest and each

set of figures is preceded by a page of explanation. The views were drawn by PIEscope using

the X window system.

All of the views follow the same general form: the experiment name is displayed at the top

(see notation 1 in Figure A.1); time is displayed on the X-axis (notation 2 in Figure A.1);

and each Aria task is displayed as a horizontal bar (notation 3 in Figure A.1) which is colored

in from its beginning time to its ending time. Figure A.12 is a clear example of multiple

tasks running over different time frames. Different kinds of events that occurred are colored in

different patterns. These will each be explained as they are encountered.

Figures A.17 and A.23 are somewhat different, in that they graphically display the CPU

uti].ization. The notations for those figures will explain the meaning of the pertinent parts of

those views.

A.I Low Priority LoopTest

Figure A.1, notation 1: The name of the experiment is displayed at the top of the view.

Figure A.1, notation 2: Time runs along the X-axis, displayed in seconds. Here, we see

that the total execution time was 0.452204 seconds.

Figure A.1, notation 3: Only one Ada task was executed, shown with the name main.

This task executed completely from beginning to end, thus the entire bar is colored in.

Figure A.I, notation 4: Each block represents one iteration of the outer loop in LoopTest.

Each loop was executed from the beginning to the end of its drawn block.

Figure A.2, notation 1: This is the same view as in Figure A.1, but now context switch

information has been overlaid. Here, a white block indicates that the task was switched

out. From this information we determine that the CPU utilization for this experiment is

60.61%.

42

/
)/

o_._

£

0 .._ .p
0 (

Q

L
0

!

I

Ip

•0 C

0 c"

L 0

I

4, O-O
,_ F,,m

,r.-_
b Q

-g

43

0

i
.£

6

_O,do
•0 ._ 11
0

L C
tL,..., L

100

•..4 Q U
f_'g

0 _

!1._ 0
0 L 0

44

"ii
0 0

0

<

A.2 High Priority LoopTest

Figure A.3, notation h The scrollbar shows that we are viewing only the end of the

experiment. The first ten seconds of the experiment are used in the DELAY statement

in LoopTest.

Figure A.3, notation 2: This experiment now has two tasks. The first is main whose

only function is to allocate and spawn the subtask that does the real work. This second

task looptest_task then performs the exact same work as main did in the low priority

example.

Figure A.3, notation 3: Each block represents one iteration of the outer loop in LoopTest.

Each loop was executed from the beginning to the end of its drawn block.

Figure A.3, notation 4: When the user c/icks the mouse button on each of these blocks

then precise information about the execution times of those events is displayed in the

window at the bottom of the view.

Figure A.4, notation 1: This is the same view as in Figure A.3, but now context switch

information has been overlaid. Here we see that the Ada task main was switched out for

the entire time that looptes__task was doing work.

Figure A.4, notations 2-7: The squiggles indicate that there is not enough screen resolution

to display the event. Under each of the squiggles is a very short context switch. The

precise times for these switches are displayed in the window at the bottom of the view,

and have been marked with the corresponding notation numbers. From the context switch

information we can ca]culate that the CPU utilization for this experiment was 96.14%.

Figure A.5, notations 2-4: PIEscope allows the user to zoom-in on a particular area of the

experiment. This view is the same as Figure A.4, but has been zoomed-in so the context

switches for notations 2-4 are now Iarge enough to be visible.

45

®
\

46

444
LL _,.

ut4t_

,QJ_;

0001

_ "_ _ I

(,.1(,,)(.,)

000

cccl

Q_

<

®

(M
CO
IN

,i-I

ii,i i ',

0 ,H

0I]

.-#0 c_

_00

H R
N It m

@ •

• • Q
_.O0

H M
II II 1

H I
II N I

i11
C C ¸

: t" ,1_ ',

_CC

iiI it

_,
_ ill w

_ i.i i.i

Ii !1 I!1

ii ill w

_.00

I. _. 11.
.) _ (.)

!

4T

D

®

G,
\

00

4B

g-
o

0

!

0
0

IN

A.3

O

Low Priority MemTest

Figure A.6, notation 1: The scrollbar indicates that we are viewing the early part of the

experiment.

Figure A.6, notation 2: The striped block indicates the period of time when the allocation

of the first large block of memory was done. The execution time for that block is displayed

in the window at the bottom of the view and is shown to be 0.001543 seconds.

Figure A.6, notations 3-5: Here, the striped blocks indicate the periods of time when the

first three allocations of small blocks of memory were executed. The execution times are

displayed at the bottom window as each being 0.001555 seconds.

Figure A.6, notation 6: The other small allocations were not monitored and therefore do

not appear in the view.

Figure A.7, notation 1-3: The striped blocks indicate the periods of time when the last

three allocations of small blocks of memory were executed. Their execution times are

displayed as being 0.001556, 0.001555, and 0.001555 seconds, respectively.

Figure A.7, notation 4: This last block indicates the period of time when the last large

allocation of memory was executed. Its execution time is displayed as being 0.014574

seconds. Note that this is nearly ten times longer than the execution time of the first

large allocation as seen in Figure A.6, notation 2.

Figure A.8, notation 1: The blocks which indicate the execution of the first large block

and the subsequent small blocks of memory are too small to be displayed with the given

screen resolution. The last large allocation of memory was large enough to be displayed.

Figure A.8, notation 2: This is a view of the entire execution but now context switch

information has been overlaid. We can see that large blocks of time during the execution

of this experiment were spent switched out. From this data we can calculate that the

CPU utilization for this experiment is 51.02%.

49

[] D
i ii i,

.®

®

®

®

®

ill

Z-,
o

o

0

.Ei

<

_ I | |
I | |

iooo

ooo

I N U
| | |

r,_ .,4 to

i i i
I i i

_,Q,Q

tN r_ ,_

i i i
i | i

I[£ El
_l 4111
_"C£

J--I -J I

gg_l
la .'a .,,I,_I

L L LI

5O

lWi

u.-_n
_n

L_

D
D

[...

t_

51

[]

ii i i

t_
eSN

0

_>

A.4 High Priority MemTest

Figure A.9, notation 1: The first allocation of a large block of memory is too small for

the resolution of the screen. The execution time is displayed below as 0.001733 seconds.

This is quite close to the execution time when MemTest was run under low priority.

Figure A.9, notation 2: The last allocation of a large block of memory is displayed, and

its execution time is displayed as 0.014763 seconds. This, too, is close to the execution

time under low priority.

Figure A.10, notation 1: The first allocation of a large block of memory is too small.

Figure A.10, notations 2-6: This is the same view as in Figure A.9, but now context switch

information has been overlaid. The Ada task main was switched out while tin_task did

useful work. In nm__ask, each context switch is too small to be displayed, but switch-out

times for 2-4 are displayed in the bottom window as 0.001523, 0.001511, and 0.001709

seconds respectively.

Figure A.11, notations 1 through 4: This is a zoomed-in view of the first large allocation

block and the first three context switches in am_task. The blocks' execution times are

displayed in the bottom window.

53

I!

L_
D
D

[

!
54

[.-.

o

twl

I_I

B

B

"'B
131

-

210 _lml

I,I_ £

X _

I_-I.._ _:
IU|3 _ _.

C
I_1_ ® o

S,. U

®

®

®

< ®

55

®

®

®

I

i

r_ ,,,.i8'_

_ to r-..

' _oo
ooo
o o •

ooo

El II n
II fl I1

,b$$
E££

MOO@

•.,I4_, 0 _"
00 ..I ,,,_
0 • • •

0 ,,re.,-__.I

II 11 II It
II II II U

0"

H B II H i_)__

_ H H N

o 0
gill e

_cc
i!

| ,<.-<.-,.

.xxx O
II 41 li 41

i-I a-I a-_ N

iII! _--

,'I_ I__

,,_1

0_0

--000

l,. ,{. t.

_ ,(,_. i_<. ,l,i.

_'ili
--0 0 0

56

A.5 Low Priority ActTest

Figure A.12, notation h The first seven striped blocks indicate the times when main was

allocating the seven subtasks.

Figure A.12, notation 2: The seven cross-hatched blocks (one executed in each subtask)

indicate the times when the subtasks were within the ACCEPT statement in ActTest.

Figure A.12, notation 3: The seven cross-hatched blocks running in main indicate the

times when main was making a call to my_act.start, but before the ACCEPT was

taken.

• Figure A.13, notation h This view shows a zoom-in on the first four task allocations in

ActTest. The timings indicated by notation 1 are for the amount of time it took between

when the main task called NEW and before the subtask actually began. Note that except

for the allocation of the second subtask, each allocation took more time than the previous

allocation, increasing in linear fashion.

• Figure A.13, notation 2: The recovery timings indicated by notation 2 are for the time it

took between when the subtask was context switched out (after entering its ACCEPT)

and before the main task "woke up" from its context switch, which would be the indication

to the main task that the subtask had been created and main could proceed.

• Figure A.13, notation 3: The precise times are shown for the events used in the timing

calculations in notations 1 and 2.

• Figure A.14, notation 1-3: This view shows a zoom-in for the last three task allocations

in ActTest. The timings were calculated the same as in Figure A.13.

• Figure A.14, notation 4: Note the large context switch that occurred in main during

neither the task allocation nor recovery part of the execution. Here, the main task was

context switched out in favor of a non-application job on the system.

• Figure A.15, notation 1: This view shows a zoom-in of the first three rendezvous in

ActTest. The timings indicated for notation 1 are for the amount of time it took from

the main tasks call to ACCEPT until the ACCEPT as taken in the subtasks. Note that

each rendezvous took an linearly increasing amount of time.

• Figure A.15, notation 2: The recovery timings indicated by notation 2 are for the time it

took between when the subtask was context switched out (after finishing its ACCEPT

and completing its work) and before the main task "woke up" from its context switch,

which would be the indication to the main task that the subtask had finished its rendezvous

and main could proceed.

57

• Figure A.15, notation 3: The precise times are shown for the events used in the timing

calculations in notations 1 and 2.

• Figure A.16, notations 1-3: This view shows a zoom-in for the last three task allocations

in ActTest. The timings were calculated the same as in Figure A.15.

• Figure A.17, notations 1-2: This view is somewhat different than all the previous views.

Here, the CPU utilization is being graphically displayed. Time is still on the X-axis in

seconds, but here a black area indicates that one of our application's tasks is switched in

and and a white area indicates that none of our application's tasks is switched in. In this

way it is easy to visualize the overall CPU utilization as it applies to the test application.

From this data the calculated CPU utilization was 49.11% for the low priority ActTest.

58

o

o

59

l Z • X • z J z

• I-,

p.,,.

0

0

GJ o 0

M W
y i N ii

o gl_d,"
d

t !i!_

m r_o IDO

u_ f_ P)

, N _-:4-;

°°-°
_1 o d|g|

d I _ II

,3 "

° t_|?

o L,,°5_

.o
ooo

< _ gggg

£CCC

I I _

o

I

o
o
N

t_

6O

00000000

0

0

0

I _'3}
v

r_NO

* I "I

o *o *

°l °l
_lc,|

|tit

N

gld:
lt|l

't:t

?IP. _

g_g_
e)4 _

g:,g:

_ 0 ¢,) L,

C Cgoge
C C C C

I

0
0

N1
e.

61

°°

0

I

•o o

o0nn0000 ® ®

62

C_

D

_°i"

0

00000000

rJ

o
>
!

.<

o
o

N

,.g

63

o t. o
El. ¢, _

D

. _®

_ .®

!

01
o

0

V_N
0_0_

,v o r_o
o o

°| °|

-'l_|l

£...i £_

•4 I%1 ,,4 _1

°| °|

NO_-OI

0 I 0 II

I i I

'!itl
41 II I
C °

1 _lll

o:II:,1
-' I," il
[-

i)l)l

i:>i:l
iI 0 _ I.It
- 4.-- 41

)000t

3D D

illgl

i i1<______I

o
i-,1

u

64

A.6 High Priority ActTest

Figure A.18, notation 1: The first seven striped blocks indicate the times when main was

allocating the seven subtasks.

Figure A.18, notation 2: The seven cross-hatched blocks (one executed in each subtask)

indicate the times when the subtasks were within the ACCEPT statement in ActTest.

Figure A.18, notation 3: The seven cross-hatched blocks running in main indicate the

times when main was making a call to my_act.star*, but before the ACCEPT was

taken.

Figure A.18, notation 4: Note the unusual behavior of activities 3, 5, and 6 after they

have finished their final rendezvous, instead of exiting relatively soon they actually finish

quite a bit later. Figures A.21 and A.22 show that these activities took context switches

which prevented them from exiting when they normally would have.

Figure A.19, notation 1: This view shows a zoom-in on the first four task allocations in

ActTest. The timings indicated by notation 1 are for the amount of time it took between

when the main task called NEW and before the subtask actually began. Note that except

for the allocation of the second subtask, each allocation took more time than the previous

allocation, increasing in linear fashion.

Figure A.19, notation 2: The recovery timings indicated by notation 2 are for the time it

took between when the subtask was context switched out (after entering its ACCEPT)

and before the main task "woke up" from its context switch, which would be the indication

to the main task that the subtask had been created and main could proceed. Unlike the

low priority example, these recovery times are instantaneous.

Figure A.19, notation 3: The precise times are shown for the events used in the timing

calculations in notations 1 and 2.

Figure A.20, notation 1-3: This view shows a zoom-in for the last three task allocations

in ActTest. The timings were calculated the same as in Figure A.19.

Figure A.21, notation 1: This view shows a zoom-in of the first three rendezvous in

ActTest. The timings indicated for notation 1 are for the amount of time it took from

the main tasks call to ACCEPT until the ACCEPT as taken in the subtasks. Note that

each rendezvous took an linearly increasing amount of time. Figure A.21, notation 2: The

recovery timing indicated by notation 2 is for the time it took between when the subtask

was context switched out (after finishing its ACCEPT and completing its work) and

65

beforethe main task "woke up" from its context switch, which would be the indication

to the main task that the subtask had finished its rendezvous and main could proceed.

• Figure A.21, notations 3-4: Note that these recovery times probably would have been

instantaneous (as in Figure A.19, notation 2) except for the context switches that occurred

in activity 3 before it exited. As a result, the recovery was interfered with by activity 3

performing extra execution.

* Figure A.21, notation 5: The precise times are shown for the events used in the timing

calculations in notations 1 and 2.

• Figure A.22, notations 1-4: This view shows a zoom-in for the last three task allocations

in ActTest. The timings were calculated the same as in Figure A.21. Note that the

recoveries after activities 6 and 7 finish axe interfered with by the extraneous context

switching at the end of activities 5 and 6. The recovery after activity 8 is done is again

instantaneous.

• Figure A.23, notations 1-2: This view shows CPU utilization as in Figure A.17. With fax

less context switching than in the low priority example, the calculated CPU utilization

was 96.38% for the high priority ActTest.

66

A A A A A A A A A

X X X X X X X X X

000000000

[]

r-,.

_,r..
_, r... ,@
. ,,_-4 r._. ,,-4

-HON
_,11 *0

0 °

I_** °

_400

-I M 0 *

i Ig" |
•-,_ II |

• N

0

vvv,_

ggg_

]

"I.

67

000000000

I I

| c'_l
v

DQ

0_0

-'-_ 0 ,'-_ 0
0 0

0 NOII

II • It •
, Ell _"

EO E._

• •
0 H 0 II

fl _,lt $

r'.. _1 ..t} _. I
_ '_" "..d}r_. I

_0_01

0 H 0 HI

-I _III
,qr N _dP I I

;t'tl

,H. !
:_00@1

_ (.1 (.1 (.)

_Ngl

0
@

N

6_

.<

68

x • X • X X X X X

D

[I I

0

_ -.
0

®

v

8

i!
N

69

AAAAAAAAA

Z Z X X X X X X X

OOOO00000

IN
_e

el.

rL

70

B

D

L

000000000

.

!

o

N

71

o

S..0_

• 4o

I.,Y../ 0 _ £
0 L 0

_']Ib il.._o

B

<

®

®

0

0

I

NM_
0000

0000

U l II If
It II m N

00QO
££££

iJ ,i._ .ib o

_'000

PI I I It
II U LIt I_

E£££

I II II II

I I! 18 II
I II # '_1

." £_ £

I 000

,lt,.p

0

la,-I

0

U

.L

T2

,_,_..___,.,._ Report Documentation Page
['_aCeACr_w'wSIr_O'_

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA CR-4340

4. Title and Subtitle

Validation Environment for AIPS/ALS:

and Results
Implementation

7. Author(s)

Zary Segall, Daniel Siewiorek, Eddie Caplan,

5. Report Date

November 1990

6. Performing Organization Code

8. Performing Organization Report No.

Alan Chung, Edward Czeck, and Dalibor Vrsalovlc

9. Performing Organization Name and Address

Carnegie-Mellon University

Electrical and Computer Engineering Department

Schenley Park

Pittsburgh, PA 15213

12. Sponsoring Agency Name and Address

National Aeronautics and Space

Langley Research Center

Hampton, VA 23665-5225

Administration

10. Work Unit No.

506-46-21-05

11. Contract or Grant No.

NAG i- 190

13. Type of Report and Period Covered

Contractor Report

Zt/88-1t/90

t4. Sponsoring Agency Code

15. Supptementa_ Notes

Langley Technical Monltor:

Final Report

Peter A. Padllla

16. Abstract

This is the final report of work done under contract NAG-l-190. This document presents the work
performed in porting the FIAT and PIE validation tools, developed at Carnegie-Mellon University, to the
AIPS system in the context of the ALS application, as well as an initial fault-free validation of the available
AIPS system. The PIE components implemented on AIPS provide the monitoring mechanisms required
for validation. These mechanisms represent a substantial portion of the FIAT system. Moreover, these

are required for the implementation of the FIAT environment on AIPS. Using these components an initial
fault-free validation of the AIPS system was performed.

This report describes the implementation of the FIAT/PIE system, configured for fault-free validation of the
AIPS fault-tolerant computer system. The PIE components have been modified to support the Ada
language. A special purpose AIPS/Ada runtime monitoring and data collection has been implemented. A
number of initial Ada programs running on the PIE/AIPS system have been implemented. The
instrumentation of the Ada programs was accomplished automatically inside the PIE programming
environment. PIE's on-line graphical views show vividly and accurately the performance characteristics of
Ada programs, AIPS kernel and the application's interaction with the AIPS kernel. The data collection
mechanisms were written in a high-level language, Ada, and provide a high degree of flexibility for

implementation under various =ystem conditions.

17, Key Words (Suggested by Author(s)}
AIPS

Fault Tolerance
Validat ion
Fault Insertion

18. Distribution Statement

Unclasslfled-Unlimited

Subject Category 62

19. Security Classif. (of this report) 20 Security Classif. (of this page) 21. No. of pages 22. Price

Unclassified Unclassified 80 A05

NASA FORM 1626 OCT 86

For sa_e by the National Technical Information Service, Springfield, V_rginia 22161-2171

NASA-Lmasgley, 1990

